@andrewchen

Get the newsletter · Featured · Recent

This is the Product Death Cycle. Why it happens, and how to break out of it

The hardest part of any new product launch is the beginning, when it’s not quite working, and you’re iterating and molding the experience to fix it. It may be the hardest phase, but it’s also the most fun.

The Product Death Cycle
All of this was on my mind when I saw a great tweet from about a year ago, on the Product Death Cycle, when things go wrong. David Bland, a management consultant based in San Francisco, tweeted this diagram:

This is what I’m calling the Product Death Cycle
– @davidjbland


product_death_cycle

A year ago when I saw this, I retweeted this diagram right away, and a year later, it’s hit 1,400+ RTs overall. This diagram has resonated with a ton of people because sadly, we’ve seen this Product Death Cycle happen many times. We’ve maybe even fallen into it ourselves – it’s all too easy. I’ve written about this phase before, in After the Techcrunch bump: Life in the Trough of Sorrow.  As well as some thoughts and strategies related to getting to product/market fit sooner rather than later.

Let’s talk about each step of this cycle, why it happens, and present a list of questions/provocations that might allow us to escape.

1) No one uses our product
The natural state of any new product is that no one’s using it :) So that’s not a problem in itself. However, the way you react to this problem is what causes the Product Death Cycle.

2) Ask customers what features are missing
One of the big early mistakes is to be completely user-led rather than having a product vision. This manifests itself in asking users “What features are missing?”

Here are the problems with this approach:

  • Users who love your product now may not represent the much larger market of non-users who’ve never experienced it. So the feedback you get might be skewed towards a niche group, and the features they suggest may not be mainstream
  • User research is great for coming up with design problems, but you can’t expect users to come up with their own design solutions. That’s your job! They may be stuck in a certain paradigm and won’t have the tools/skills to come up with their own solutions. Faster horses and all that
  • “What features are missing?” assumes that just adding more features will somehow fix the problem. But there are many, many other reasons why your product may not be working- maybe the pricing is wrong. Or it’s not being marketed well, the activation is broken, or the positioning sucks, etc.

Even the Simpsons know that slavishly listening to feature requests is a bad idea. Thus the episode about The Homer, a car that tried to appeal to everyone:

the-homer-inline4

Instead of asking for what’s missing, instead the solution is to ask- what is the root cause of users not using the product? Where’s the fundamental bottleneck? In a world where 80% of daily active users are lost within 30 days, there’s a lot of reasons why users are bouncing before they even get into the “deep engagement features” you’ve built out. Asking engaged users what features they want won’t help much- instead you’ll likely get a laundry list of disorganized features that will push you towards your competitors.

One book recommendation on this topic: Harvard Business School professor Youngme Moon’s book on competitive differentiation precisely describes the process in which customer research quickly leads to muddled differentiation, it’s worth reading.

3) Build the missing features
The second jump in the Product Death Cycle is to take features that customers have suggested, and just build the missing features. However, this quickly falls into the Next Feature Fallacy, which is the mistaken belief that just adding one more new feature will suddenly make people want to use your whole product.

As I discussed in that essay, every product has an amazing dropoff of usage from when people first encounter it:

Screenshot 2015-05-31 19.50.54

 

I’ve also published some real-life data at Losing 80% of mobile users is normal. The point is, most interaction with a product happens in the first few visits. That’s where you can ask the user to setup for long-term retention and to present the user with a magic moment. Building a bunch of “missing” features is unlikely to target the leakiest part of the user experience, which is in the onboarding. If the new features are meant to target the core experience, it’s important that they really improve the majority workflows within the UI, otherwise people won’t use them enough to change their engagement levels.

To break out of this part of the Product Death Cycle, ask yourself- is this enough of a change to influence the experience? Is it far enough “up the funnel” to impact the leakiest parts of the product experience? Is this just another cool feature that only a small % of users will experience?

Breaking out
The Product Death Cycle is tricky because it’s driven by the right intentions: Listen to customers and build what they want. People in the Product Death Cycle naturally believe that they are doing the right things, but good intentions don’t translate to good traction. Instead, ask “why?” over and over, to understand the root cause for lack of growth.

The response to these root causes should consist of a large toolkit of responses- maybe marketing: Pricing, positioning, distribution, PR, content marketing, etc. Maybe it has to do with the strategy: Going high-end instead of low-end. Building a utilitarian product instead of a network-based one, or vice versa. The point is, the solution should be tailored to the root cause, rather than to be explicitly driven by the desire of every product team to build more product.

Thanks again to David Bland for sharing the Product Death Cycle diagram with all of us.

PS. Get new updates/analysis on tech and startups

I write a high-quality, weekly newsletter covering what's happening in Silicon Valley, focused on startups, marketing, and mobile.

Sign Up Now

Sign up for mailing list and receive new posts directly to your inbox.

We promise never to share or sell any of your personal information.

Quick update: Quoted in WSJ on dating apps, recent podcast interview, plus recent essays

Screenshot 2015-06-10 18.13.50

Couple quick things that I wanted to batch up in a single post.

A quote from me in the Wall Street Journal today
First, there’s a quote from me in the Wall Street Journal today, for an article covering the opportunities/challenges of dating apps. I’ve been told the story will be on page B1 of the paper edition, but here’s the link for everyone who loves trees: The Dating Business: Love on the Rocks by Georgia Wells. The quote was pulled from a recent essay of mine on why investors are often skeptical of dating startups, which you can read: Why investors don’t fund dating.

Podcast interview with Codenewbies
Last week, I did a fun, casual interview with Codenewbies, a podcast targeted at people learning to code. In the interview, I talk about how taking a year of Computer Science in college, plus internships as a Software Engineer, helped me break into my first post-college job, at venture capital Mohr Davidow Ventures. And I also have a short story about the first real program I ever wrote, in GW-BASIC back in fifth grade, where I managed to blow up one of the Mac Plus computers in class.

Let’s meet up in person (San Francisco)
I’m kicking off a series of small-group gatherings to grab drinks/food in SF – something like ten people, in SOMA. If you’re based in the area, I’d love to catch up and meet. I plan to include friends/guests from top startups and tech companies in the Bay Area to join us- here’s how to register.

Follow me on Twitter
Just a reminder- if you’re not already following me, here I am: @andrewchen

Recent essays, if you missed them
Finally, I wanted to include a list of some of my recent essays in case you missed them. I’m pretty happy with how the last couple have turned out, so I hope you enjoy.

Thanks for reading!

PS. Get new updates/analysis on tech and startups

I write a high-quality, weekly newsletter covering what's happening in Silicon Valley, focused on startups, marketing, and mobile.

Sign Up Now

Sign up for mailing list and receive new posts directly to your inbox.

We promise never to share or sell any of your personal information.

New data shows losing 80% of mobile users is normal, and why the best apps do better

Exclusive data on retention curves for mobile apps
In a recent essay covering the Next Feature Fallacy, I explained why shipping “just one more feature” doesn’t fix your product. The root cause is that the average app has pretty bad retention metrics. Today, I’m excited to share some real numbers on mobile retention. I’ve worked with mobile intelligence startup Quettra and it’s founder/CEO Ankit Jain (formerly head of search+discovery for Google Play) to put together some exclusive data/graphs on retention rates** based on anonymized datapoints from over 125M mobile phones.

Average retention for Google Play apps
The first graph shows a retention curve: The number of days that have passed since the initial install, and what % of those users are active on that particular day. As my readers know, this is often used in a sentence like “the D7 retention is 40%” meaning that seven days after the initial install, 40% of those users was active on that specific day.

The graph is pretty amazing to see:

retention_graph_average

Based on Quettra’s data, we can see that the average app loses 77% of its DAUs within the first 3 days after the install. Within 30 days, it’s lost 90% of DAUs. Within 90 days, it’s over 95%. Stunning. The other way to say this is that the average app mostly loses its entire userbase within a few months, which is why of the >1.5 million apps in the Google Play store, only a few thousand sustain meaningful traffic. (*Tabular data in the footnotes if you’re interested)

Ankit Jain, who collaborated with me on this essay, commented on this trend:

Users try out a lot of apps but decide which ones they want to ‘stop using’ within the first 3-7 days. For ‘decent’ apps, the majority of users retained for 7 days stick around much longer. The key to success is to get the users hooked during that critical first 3-7 day period.

This maps to my own experience, where I see that most of the leverage in improving these retention curves happen in how the product is described, the onboarding flow, and what triggers you set up to drive ongoing retention. This work is generally focused on the first days of usage, whereas the long-term numbers are hard to budge, no matter how many reminder emails you send.

Note that when we say that these DAUs are being “lost” it doesn’t mean that users are suddenly going completely inactive – they might just be using the app once per week, or a few times per month. Different apps have different usage patterns, as I’ve written about in What factors influence DAU/MAU? with data from Flurry. Just because you lose a Daily Active User doesn’t mean that you’re losing a Monthly Active User, yet because the two correlate, you can’t sustain the latter without the former.

How do the best apps perform? Much better.
The second graph we’ll discuss is a comparison of retention curves based on Google Play ranking. The data shows that there is a very clear and direct correlation:

android_retention
The top apps have higher D1 retention rates, and end with much stronger absolute D30 numbers. However, interestingly enough, the falloff from D1 to D30 is about the same as all the other apps. Another way to say it is that users find the top apps immediately useful, use it repeatedly in the first week, and the drop off happens at about the same speed as the average apps. Fascinating.

Bending the curve happens via activation, not notification spam
To me, this is further validation that the best way to bend the retention curve is to target the first few days of usage, and in particular the first visit. That way, users set up themselves up for success. Although the data shown today relates to mobile apps, I’ve seen data for desktop clients and websites, and they all look the same. So whether you’re building a mobile app or something else, the same idea applies:

  • For a blogging product, you might want users to pick a theme, a name, and write their first post, to get them invested.
  • For a social service, you might want users to import their addressbook and connect to a few friends, to give them a strong feed experience and opt them into friend notifications
  • For a SaaS analytics product, you might want users to put their JS tag on their site, so that you can start collecting data for them and sending digest emails
  • For an enterprise collaboration product, you might want users to start up a new project and add a couple coworkers to get them started

Each of the scenarios above can have both a qualitative activation goal, as well as quantitive results to make sure it’s really happening. Whatever you do, sending a shitload of spammy email notifications with the subject line “We Miss You” is unlikely to bend the curve significantly.

I hate those, and you should too.

(Thanks again to Ankit Jain of Quettra for sharing this data and assisting me in developing this piece. More from them here, which examines app-by-app retention rates for messaging apps)

*Tabular data

0 1 3 7 14 30 60 90
Top 10 Apps 100 74.67 71.51 67.39 63.28 59.80 55.10 50.87
Next 50 Apps 100 64.85 60.31 54.13 49.48 44.81 39.60 34.50
Next 100 Apps 100 48.72 42.96 35.93 30.79 25.45 21.25 18.98
Next 5000 Apps 100 34.31 28.54 21.64 17.43 13.62 10.74 8.99
Average 100 29.17 23.42 17.28 13.11 9.55 6.82 3.97

 

**Methodology
Some notes on methodology below, shared by Quettra:

Quettra software, that currently resides on over 125M Android devices worldwide, collects install and usage statistics of every application present on the device. For this report, we examine five months of data starting from January 1, 2015.

Since we exclusively consider Android users in this study, we exclude Google apps (e.g. Gmail, YouTube, Maps, Hangouts, Google Play etc.) and other commonly pre-installed apps from our study to remove biases. We also only consider apps that have over 10,000 installs worldwide.

A note on privacy, which is very important to us: All data that we collected is anonymized, and no personally identifiable information is collected by any of our systems. From our understanding, this is the first time ubiquitous mobile application usage has been analyzed at such large scale. Quettra does not have a direct relationship with any of the apps or app developers mentioned in this report.

PS. Get new updates/analysis on tech and startups

I write a high-quality, weekly newsletter covering what's happening in Silicon Valley, focused on startups, marketing, and mobile.

Sign Up Now

Sign up for mailing list and receive new posts directly to your inbox.

We promise never to share or sell any of your personal information.

Photos of the women who programmed the ENIAC, wrote the code for Apollo 11, and designed the Mac

The Next Feature Fallacy: The fallacy that the next new feature will suddenly make people use your product

Why investors don’t fund dating

Why we should aim to build a forever company, not just a unicorn

Ten classic books that define tech

How I first met Eric Ries and also why I’ve ordered his new Kickstarter-exclusive book The Leader’s Guide

This is what free, ad-supported Uber rides might look like. Mockups, economics, and analysis.

Meet me and Eric Ries at a private event on March 21st – here’s how to attend

Personal update: I’ve moved to Oakland! Here’s why.

The most common mistake when forecasting growth for new products (and how to fix it)

The race for Apple Watch’s killer app

My top essays in 2014 about mobile, growth, and tech

Why messaging apps are so addictive (Guest Post)

IAC’s HowAboutWe co-founder: How to Avoid Delusional Thinking in Start-up Growth Strategy (Guest Post)

Mobile retention benchmarks for 2014 vs 2013 show a 50% drop in D1 retention (Guest post)

New data on push notifications show up to 40% CTRs, the best perform 4X better than the worst (Guest post)

Why Android desperately needs a billion dollar success story: The best new apps are all going iPhone-first

Early Traction: How to go from zero to 150,000 email subscribers (Guest Post)

New data shows up to 60% of users opt-out of push notifications (Guest Post)

Why aren’t App Constellations working? (Guest Post)

There’s only a few ways to scale user growth, and here’s the list

Lessons learned adding messaging to a notes app (Guest Post)

Retention is King (Guest Post)

Why consumer product metrics are all terrible

How to solve the cold-start problem for social products

How to design successful social products with 3 habit-forming feedback loops

Congrats to my sis Ada Chen, who’s joining SurveyMonkey as VP Marketing

How to make content creation easy: Short-form, ephemeral, mobile, and now, anonymous

My 2013 essays on mobile, startups, and tech

When a great product hits the funding crunch

A clever way to buy Facebook ads based on what your users like (Guest post)

Use this spreadsheet for churn, MRR, and cohort analysis (Guest Post)

Zero to Product/Market Fit (Presentation)

The Rise of Fat Venture Capital

How Google and Zynga set & achieve meaningful OKRs (Guest Post)

Case studies from “Why you can’t find a technical co-founder”

Congrats to my friend Steve Chung of Frankly on their new $6M investment by SK Planet