@andrewchen

Subscribe · Featured · Recent

How to solve the cold-start problem for social products

EmptySeats-m

Social products need mass before scaling growth
I often write on the topic of how social products can scale growth, resulting in inbound emails to the effect of “how do I get my product to go viral?” The problem is, until you have a strong baseline of engagement, it’s nearly impossible to have a metrics-oriented discussion on growth and virality. So you have to get that first, before you can talk about the next step.

The focus should be on creating that baseline – a small-to-medium sized network of highly engaged users in a big market, that’s growing. Maybe this is 10,000+ active users organically gaining hundreds per day, at a 20%+ DAU/MAU. If you can hit that, then it’s much easier to talk about how to scale it up. I’ve written Zero-to-Product/Market Fit in the past to talk about some of the steps you might take to reach this stage. Similarly, I have some slides for this topic. (And if you’re at this point, don’t hesitate to email me)

There’s a unique aspect to social products in getting to this baseline, which is how can you solve the dreaded cold-start problem? If your product is inherently social, but you don’t have a critical mass of users, then it’ll naturally fail. How do you get beyond that? This is different than productivity or SaaS products because you don’t just have to get the product right- you have to get your initial user network to be large enough and active enough too.

Here’s a few ways I’ve collected over time on how to approach that problem:

Single user utility
This is one of the most common ways to approach the cold-start problem. Give people a value-proposition that gets them creating/curating content within your network, and as a by product, it’ll help bootstrap the network around the user. I think of Pinterest as the quintessential example here, where you can use it as a tool to collect/gather/organize content around a particular project you’re pursuing- decorating a new apartment, planning a wedding, or switching to a new diet. As you’re doing this, then you use the common mechanisms around finding friends, Facebook sign in, etc., to build a network around the user. If you can get this to grow fast enough, and build the right social feedback loops, then users will find themselves blending a single user value prop with a network value prop over time.

Linkedin is another classic example here, where initially they could market themselves as a way to put your resume online. But of course, once you go through their onboarding flows, you’ll quickly find out that people are connecting and reaching out to you via your profile, thus cementing the network value proposition.

A blog network like Tumblr is another great example. People like making their own websites, and you can use Tumblr for that – plus you get the themes, tools, and domain for free. But once you’re set up, it becomes easy to get reblogged and followed and all of a sudden you’re part of the network product.

The trickiest part of using this strategy is that you’re asking users to switch their mindset from one value proposition into the other. Managing that transition isn’t easy. You may find that users actually want their single user value prop to be private, and nonsocial by nature. Or you might find that if you don’t get the social feedback loops right, you may not be able to convert your one-off users into network users fast enough, and it feels like you are maintaining two separate products. And it might feel like your product isn’t really working if the majority of your users aren’t involved in the network.

Publishing into an pre-existing network
A variation of the single user utility is one where the primary functionality of your product is to share into a pre-existing network. The classic example of this is Instagram, which provided the initial value prop of photo filters and sharing to Facebook, which can be used even if none of your friends are using the service. However, it spread virally over time, which brought more people to Instagram, and this was then used to bootstrap a separate network based on following celebrities rather than the bidirectional Facebook friend model.

(I published a guest post Social Products with with utility, not invites, as a longer exploration of this idea)

The main challenge with this model is twofold: One is the “two value proposition” problem as stated before: Initially, a large % of your users might view Instagram as “that app I use to post to Facebook” rather than a destination in itself. The second challenge is that you can have a platform dependency that may not end well if your “host platform” decides to cut you off.

Small network requirements
Not every product has to have a single user value proposition, and in fact, it can complicate things to feel like you have to design for multiple use cases at the same time. Instead, a different approach would be to focus on building a product that has a small critical mass requirement. In fact, you could look at the following categories and assess their critical mass requirements:

  • Skype: 2+ people
  • Group mailing list: 5+ people
  • Social network: 10+? 50+?
  • Social+mobile+location based: Lots :)

So one strategy is, how can your product be useful for just a small handful of people? That way, if you have a big launch, you can get lots of active pairs of users, like families or couples, and you can hold on to your audience. But if your product requires a very large critical mass of users, then maybe it will be very hard to get there.

Local network saturation
For products that require a large critical mass to get started, I’m already skeptical. But if you must, going after some kind of hyper-connected vertical is a good way to start. Rather than getting 1,000 users randomly and who don’t know each other, instead you focus on getting 1,000 users who are densely connected already. That way, you can saturate the network and hold onto that group of 1,000, and then go from there.

Although the following companies also often had attributes such as single user value prop and small network requirements, it’s useful to think about starting within a niche: Yammer did this within a company. Yelp did this within San Francisco. Facebook within Harvard, and Twitter within the tech community at SXSW. Snapchat within SoCal high schools.

Perhaps there’s a niche hyper-connected pre-existing network that matches with your product, and if you can retain those users, then you can build a much larger network from there.

Why big unfocused launches often fail
The above provides a clue on why big social product launches on Techcrunch or DEMO or whatever often fail. The problem comes down to the fact that for social products, you often need hit some metric of connection density to succeed. A “minimum network density” metric, if you will. And when you think about it like that, you’d much rather have 100,000 users with a density of 30 connections/person, than 1,000,000 who have a density of 2 connections. Because ultimately, those million users will churn out because they won’t have the content and feedback loops necessary to stay engaged.

Big launches fail because they might pump up the total users number, but don’t help much with the network density number. If anything, they might lower the average. So if you want to go with the big launch, make sure that it either targets a network that’s hyper-connected, and who will onboard nicely into your product. Or make sure there’s a very strong single user value prop, and even if they can’t find anyone they know in the product, that’s OK.

OK, good luck my friends!

PS. Get new essays sent to your inbox

Get my weekly newsletter covering what's happening in Silicon Valley, focused on startups, marketing, and mobile.



How to design successful social products with 3 habit-forming feedback loops

TOMA_3loopsW2

Social products share a common ancestry and set of problems
It’s been a decade after Friendster popularized the notion of the social network, and we’ve seen hundreds of flavors of social products. Many of them are very different from each other, showing that success can come from many variations. I’ve come to believe there’s 3 main feedback loops that drive the success of these social product designs – here’s the trifecta:

  1. A feedback loop that rewards content posters when they push new content into the network
  2. A feedback loop that rewards passive content consumers with relevant and valuable content
  3. A feedback loop that rewards (and culls) connections within the network

It’s great when all three feedback loops act in harmony. As users act within each feedback loop, everyone’s happy, and the players in the ecosystem produce and consume valuable content for the network. When this happens on a daily or hourly basis, it creates habitual usage within your product- driving engagement and retention.

On the other hand, when even one feedback loop starts to fail, reverse Metcalfe’s Law goes into effect, leading to stagnation and ultimately, network collapse.

As an industry we’ve often talked about the distribution of content creators, curators, and consumers – it’s often known as the 1/9/90 principle. But that’s about the distribution of these different kinds of users, and not about fundamental motivations behind their actions. The feedback loops for social product aims to think in terms of why these feedback loops are able to create happy emotions and build up habits. Furthermore, by looking at each loop in isolation, it becomes more obvious where one could innovate- by adding a twist in content creation, consumption, or how people are networked. I’d argue that anonymity, constrained media types, algorithmic news, and other innovations all fit into these feedback loops in different ways.

Content posters that crave feedback (or utility)
First and foremost, let’s talk about the folks who post content – these are the 1% and 9% part of the 1/9/90. These users might post content by creating it in a textarea or uploading a photo, or it might be more curation oriented- simply retweeting a funny link or sharing a link. Either way, they take an action that writes new info into your network that impacts the content consumption experience. The feedback loop that’s important here is to reward content posters with social feedback. You publish content to your audience and then social feedback trickles in over time, drawing you back to the product. If content creation is easy enough, and the social feedback is compelling enough, then you do more. And so the loop continues.

It turns out that what type of content people post is important: Social products ultimately have some kind of content in the middle of it (sometimes called the social object), that determines the posting/consumption behavior of the content. This might be a tweet, a photo, a musical playlist, a restaurant review, or even a commerce page. It would be a mistake to assume that it’s as simple as wanting this content to be as simple as possible to create, because you also need to make it a frequent behavior. You also need the resulting content to be compelling as well – it’s these constrains that make this system tricky.

First let’s talk about what it means to make the posting “easy” – it’s not just that the tools are simple, but also:

  • You’re already creating it, so it’s not a new behavior (for example, almost everyone sends links, photos, etc.)
  • You can create it in seconds (sometimes via an artificial constraint)
  • You do it all the time, and over a long period of time
  • You don’t feel self-conscious publishing it
  • You can use new technology that lowers the bar (location sensors, camera, etc.)

A lot of the recent innovations in social products have focused on making this easier. One important tool is the use of constrained media types, where a tweet of 140 characters ensures a level playing ground for content so everyone can write a tweet in a few seconds. The 6-second Snapchat lowers the mental effort in taking the perfect photo. Foursquare uses our smartphones to make it easy to publish our location, whereas years ago, the effort on a feature phone would have been much higher. Similarly, the new trend of anonymity is another way to lower our inhibitions towards content creation. (I’m excited about the trend towards wearable and ubiquitous computing because they’ll be tools for all sorts of easy content creation.)

The tricky part of content creation is that the output has to be compelling to consumers, and over a long period of time. If your content is novelty (for example an avatar creator), then it may thrive for a period of time but ultimately the loop will weaken and stop. That’s fine for an ad campaign but not a product.

On the other hand, sometimes content can be very high cost but still be really compelling, for example long-form writing or high-production video production. You end up with a small % of creators who can actually author the content, but the end result is compelling enough that the whole thing keeps going. Yelp reviews, Stackoverflow, and others operate like this, with a push from SEO which help both creators and consumers find the site again over time.

Ultimately, the balancing act between content creation cost, the frequency/retention of it, and how compelling the output is – well that’s the magic of a new product design.

The health of the feedback loop around content consumption versus social feedback is based on a number of key variables, all of which are interrelated with each other:

  • What % of users create content
  • How much content is created (ease, frequency, retention)
  • Who this content is shown to
  • How compelling the content is
  • What % of consumers give feedback to the content creators
  • How compelling that feedback is
  • Whether the feedback brings back content creators to make more

The tricky part to the above is that many key variables oppose one another. You can increase how often content is shown to people just by blasting out content indiscriminately, but that decreases the relevance of the content. You can make it really easy to give user feedback, but at the cost of making the feedback less compelling. All of these tradeoffs ultimately manifest themselves in the design of a social product, hopefully in the right dosage and combination.

One footnote is that content posters can also be compelled by providing a single user utility, which produces compelling content as a byproduct. The classic example of this is bookmarking- Pinterest and Delicious help you organize content as your single user utility, but once the content is in the network, other folks can interact with it. This ultimately bootstraps the network as positive social feedback flows in, ultimately replacing the “organize stuff” value proposition with a “people tell you how much they love your stuff” benefit.

Content consumers want relevant content, updated frequently
Now lets think about the viewing experience. When it comes to content consumption, I think about the things that people want to look at every day. There’s not too many of them. News about their friends/family, news about the world. News about work. That’s one big chunk. Entertainment, which these days might look like YouTube videos, but even easy-to-create memes. For some demographics, maybe they want to see commerce content – shopping is always fun. And if you have hobbies, maybe you want to see a bunch of vertical content about that kind of thing – whether it’s about the arts, cooking, or programming.

The feedback loop for content consumers is simple: Every time they open your app or website, they see compelling content. That builds a habit for them to check in every morning, every time they’re standing in line, and every time they’re bored at work.

Yet the loop is easily broken – here’s the usual failure states:

  • Feeds that lack content
  • Feeds with stale content
  • Feeds with too much content
  • Feeds with irrelevant content

Lack of content and stale content comes from using a friending/following method of connecting content posters and consumers – but often, the network is underdeveloped or isn’t growing fast enough. Or maybe there’s not enough friend density to drive a full feed. Or even if there is a lot of users using the product, there isn’t the “right” users – for instance, an adult user stumbling into a website mostly filled by teens. These are some of the common reasons why it can be difficult to evaluate new social products – even if the mechanics and loops are well setup, if you don’t have the right users it’s hard to see the magic.

But once there’s a nice balance of new content coming into a feed at about the rate that content consumers want to see it, something great happens. Then the engagement can lead to people giving social feedback to the folks who posted it in the first place – via likes, comments, re-shares – and that stimulates the production of more content.

Connecting content posters and consumers to drive relevance
The way that content consumers participate in the feedback loop is that they give feedback to content creators. But before they do that, they need to have a method of picking what content is relevant to them on their home screens:

  • Picking people (Facebook, Twitter)
  • Picking topics (Quora, Stackexchange)
  • Leaderboards (Reddit, Hacker News)
  • Editorial curation (Medium)
  • Algorithmic curation (Flipboard, Prismatic)
  • Location (Foursquare, Highlight)
  • Anonymously matched (Secret)
  • … and more to be invented!

All of the above work, with different tradeoffs. Allowing people to customize their content consumption based on people and topics is the most scalable, but the hardest to get started. It’s a classic cold-start problem. To get to that, you need a critical mass of content creators who are making the kind of content that might attract a passive audience. Given that content creators are also consumers, that’s why oftentimes it’s the easiest to get started with a group of content creators.

The feedback loop about generating meaningful connections needs to reward the network when authentic connections are made. When you pick a new topic, or a new person, does that expose you to new content that then gives you new opportunities for people to follow? Do you have plenty of opportunities to unfollow or otherwise clean out your feed of irrelevant information? And are new people joining the product all the time, driving notifications, re-engagement, and ultimately new content into the network?

Editorial curation and leaderboards (like Hacker News) are easier to start, but have the drawback that they don’t scale well. Editorial requires you hire lots of people. Leaderboards create a single public space where it’s difficult to create a “one size fits all” experience that makes everyone happy.

It’s also difficult to mix the two. If you combine user generated content with editorial, within the same feed, then inevitably editorial content will “steal” the feedback from the UGC. That’ll weaken the loop. Instead, to really make sure that enough social feedback is being given, the goal is to make a feed with compelling assortment of content, and a lot of easy ways for consumers to interact with the content creators.

Another interesting issue on social feedback is the issue of quality. If you upload a video to YouTube, and then get 1000s of incomprehensible comments from teenagers, is that better than a smaller number of comments from thoughtful people? I suppose it depends on your own tastes, but over time, I’ve personally come to value the feedback of a small group of people I respect rather than trying to maximize the levels of pageviews or comments that I get.

This can be a difficult challenge because startups obviously face the pressure to grow, and one of the easiest ways to do that is to get your users to invite and add lots of meaningless connections. At the same time, if they follow too many users, or topics, then their feed will get busy and the product will lose relevance. So ideally, you have a system in place where users can add (and remove) connections to other users easily, and the system is able to suggest more relevant connections. This should also provide a better and more personalized experience around content consumption.

Building a checklist to ensure your loops are healthy
I leave you with a checklist for those of you who are designing social products, but find that your feedback loops aren’t quite working. The question I’d ask is, zoom into each of the feedback loops, starting with the folks who are posting content. Ask yourself, are they getting feedback on every action they take? Is it high quality feedback that makes them feel good? Are they making enough content to be interesting? If not, the feedback loop is broken and needs to be fixed.

For content consumers, are people getting high value, meaningful feeds? Or is it a random mishmash of popular content in your product? And if the feedback loops aren’t working, consider creating a small network where it all works, and grow that out, rather than forcing bad feeds on everyone that visits.

Or alternatively, consider taking a small part of another products’ feedback loops, and tweaking it a little. There’s many innovative products yet to be invented.

In a decade of social product design, we’ve seen many significant innovations around many components of these feedback loops. Facebook innovated with real names and a privacy model which helped drive closer-knit social feedback. They also invented the feed, a new way for posters and consumers to more efficiently transact on content. Twitter pioneered the follow model, which is yet another way to connect people. Instagram took advantage of much easier content creation methods on your smartphone, combined with plugging into existing networks, to bring something new to the model. And recently, anonymity apps like Secret are connecting people in yet another new way.

When I first arrived in Silicon Valley back in 2007, I remember a very smart B2B investor asked me, “Does the world need another social app?” implying that the category had been fully exploited. I think we see that in fact, given the years of solid innovation since then, there’s many new social products yet to come.

PS. Get new essays sent to your inbox

Get my weekly newsletter covering what's happening in Silicon Valley, focused on startups, marketing, and mobile.



Congrats to my sis Ada Chen, who’s joining SurveyMonkey as VP Marketing

I’m happy to congratulate my kid sister Ada Chen (@adachen) who joined SurveyMonkey as their VP Marketing this week. Awesome.

Ada is exceedingly modest for a successful entrepreneur. She has two successful exits and a deep background in marketing (yes, it runs in the family!). After attending UPenn and joining Microsoft, she soon moved from Seattle to San Francisco to join her fiance Sachin Rekhi (now husband). In the process, Ada met with a ton of different startups, ultimately joining as one of the first dozen employees at Mochi Media, an Accel-backed games+ads startup. Soon after, it was grown to over 100M uu/month and acquired for $80M by Shanda Games, a public games co in China.

Soon after, she started Connected with her husband Sachin, backed by Trinity and 500 startups, which aimed to manage all your professional relationships in one place. The technology behind the product was amazing, and was quickly picked by Linkedin to form their new Contacts product – the announcement here. And now, she’s moved on to one of the so-called “unicorn” billion dollar companies in Silicon Valley at SurveyMonkey.

It’s great to see friends do well, and even better to see my sister do well. I’m happy to share this good news.

And finally, a photo of us in our bowl cut days:

262272_928041235767_3729053_n

PS. Get new essays sent to your inbox

Get my weekly newsletter covering what's happening in Silicon Valley, focused on startups, marketing, and mobile.



How to make content creation easy: Short-form, ephemeral, mobile, and now, anonymous

My 2013 essays on mobile, startups, and tech

When a great product hits the funding crunch

A clever way to buy Facebook ads based on what your users like (Guest post)

Use this spreadsheet for churn, MRR, and cohort analysis (Guest Post)

Zero to Product/Market Fit (Presentation)

The Rise of Fat Venture Capital

How Google and Zynga set & achieve meaningful OKRs (Guest Post)

Case studies from “Why you can’t find a technical co-founder”

Congrats to my friend Steve Chung of Frankly on their new $6M investment by SK Planet

Easter Egg Marketing: How Snapchat, Apple, and Google Hook You

How is Yahoo really doing? Here’s the Google Trends data (Guest Post)

Ignore PR and buzz, use Google Trends to assess traction instead

Books I’m reading (2013)

Constrained media: How disappearing photos, 6 second videos, and 140 characters are conquering the world

The highest ROI way to increase signups: Make a minimal homepage (Guest Post)

9 ways a billion dollar new mobile company might be created (Guest Post)

Mobile traction is getting harder, not easier. Here’s why.

Why you can’t find a technical co-founder (Guest Post)

How to grow your app revenue with DuPont analysis (Guest post)

New college grads: Don’t sell your time for a living

I’m training new Growth Hackers. Email me.

Does your product suck? Stop adding new features and “zoom in” instead

Linkedin, Facebook, Google, Twitter, eBay, YouTube, Wikipedia, Amazon, Hotmail, Blogger, Apple: How they used to look

The critical metrics for each stage of your SaaS business (Guest post by Lars Lofgren of KISSmetrics)

The death of RSS in a single graph

Featured essays from 2011-2013: Facebook, Growth Hacking, Mobile, and more.

Why developers are leaving the Facebook platform

Growth Hackers Conference, upcoming May 3rd, with 30% off discount code

RSS, I quit you. Please subscribe to email updates for this blog instead.

How this blog grows: Evergreen content, Social whales, and “Don’t get bored”

Why are we so bad at predicting startup success?

My Quora answer to: How do you find insights like Facebook’s “7 friends in 10 days” to grow your product faster?

I got a startup pitch via Snapchat, here’s the story

Social products win with utility, not invites (Guest Post)

Minimize your Time to Product/Market Fit

I’m a Google Glass skeptic and think it’ll be the next Apple Newton